Journal Articles and Book Chapters

  1. Dolatabadi, E., Moyano, D., Bales, M., Spasojevic, S., Bhambhoria, R., Bhatti, J., Debnath, S., Hoell, N., Li, X., Leng, C., & others. (2023). Using Social Media to Help Understand Long COVID Patient-Reported Health Outcomes: A Natural Language Processing Approach. Journal of Medical Internet Research, 2022–2012.
  2. Dahan, S., Bhambhoria, R., Townsend, S., & Zhu, X. (2022). Analytics and EU Courts: The Case of Trademark Disputes. The Changing European Union: A Critical View on the Role of Law and the Courts.
  3. Bhambhoria, R., Saab, J., Uppal, S., Li, X., Yakimovich, A., Bhatti, J., Valdamudi, N. K., Moyano, D., Bales, M., Dolatabadi, E., & others. (2022). Towards providing clinical insights on long covid from twitter data. Multimodal AI in Healthcare: A Paradigm Shift in Health Intelligence, 267–278.

Conference Proceedings

  1. Bhambhoria, R., Dahan, S., Li, J., & Zhu, X. (2024). Evaluating AI for Law: Bridging the Gap with Open-Source Solutions.
  2. Luo, C. F., Bhambhoria, R., Dahan, S., & Zhu, X. (2023). Prototype-Based Interpretability for Legal Citation Prediction. ACL 2023.
  3. Li, J., Aitken, W., Bhambhoria, R., & Zhu, X. (2023). Prefix Propagation: Parameter-Efficient Tuning for Long Sequences. ACL 2023.
  4. Bhambhoria, R., Chen, L., & Zhu, X. (2023). A Simple and Effective Framework for Strict Zero-Shot Hierarchical Classification. ACL 2023.
  5. Luo, C.-F., Bhambhoria, R., Zhu, X., & Dahan, S. (2023). Legally Enforceable Hate Speech Detection for Public Forums. Findings of EMNLP.
  6. Li, J., Bhambhoria, R., & Zhu, X. (2022). Parameter-Efficient Legal Domain Adaptation. Proceedings of the Natural Legal Language Processing Workshop 2022.
  7. Bhambhoria, R., Liu, H., Dahan, S., & Zhu, X. (2022). Interpretable Low-Resource Legal Decision Making. AAAI Conference on Artificial Intelligence (AAAI).
  8. Luo, C. F., Bhambhoria, R., Dahan, S., & Zhu, X. (2022). Evaluating Explanation Correctness in Legal Decision Making. Canadian Conference on Artificial Intelligence.
  9. Bhambhoria, R., Dahan, S., & Zhu, X. (2021). Investigating the State-of-the-Art Performance and Explainability of Legal Judgment Prediction. Canadian Conference on Artificial Intelligence.
  10. Bhambhoria, R., Feng, L., Sepehr, D., Chen, J., Cowling, C., Kocak, S., & Dolatabadi, E. (2020). A smart system to generate and validate question answer pairs for COVID-19 literature. Proceedings of the First Workshop on Scholarly Document Processing, 20–30.
  11. Lam, J., Bhambhoria, R., Liang, D., Zhu, X., & Dahan, S. (2020). The Gap between Deep Learning and Law: Predicting Employment Notice. ICML Workshop on Law & Machine Learning (LML).

Other

  1. Bhambhoria, R. (2024). Natural Language Processing for Justifiable Legal Practitioner Assistance. Queen’s University (PhD Thesis).
  2. Dahan, S., Bhambhoria, R., Zhu, X., & Townsend, S. (2020). AI-powered Trademark Dispute Resolution-Expert Opinion Commissioned by the European Union Intellectual Property Office (EUIPO).